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Abstract. Unwanted traffic is a serious problem for users and operatorsof net-
works.Collaboration amongst victim machines or networks, for example by ex-
changing lists of suspected attackers, has been proposed tomitigate this prob-
lem. However, the performance of such techniques on real Internet traffic is not
well understood. Here, we improve upon this understanding by correlating several
large spam corpora with flow traces from an ISP network, detecting malicious be-
havior of end hosts, and evaluating the ability of end-hoststo coordinate to block
these attacks.
We have made several key findings. First, malicious hosts often attack many vic-
tims within relatively short time periods. Hence, collaboration techniques that
maintain a small window of history work well, and are often sufficient to block
the majority of attacks. We found that small groups of 100 collaborative end-hosts
is enough to mitigate up to90% of anomalous events such as DoS or port scans.
Second, malicious hosts commonly alternate between a rangeof malicious behav-
ior (including DDoS, scanning, and spamming). Based on thisfinding, we pro-
posecross-class anomaly detection, where hosts monitor and share information
across different kinds of attacks, further increasing the benefits of collaboration.

1 Introduction

Unwanted traffic from malicious hosts is a tremendous problem in the Internet today.
DDoS attacks, exploit scanning, email and instant-messagespam, click fraud, and other
forms of malicious behavior are a common occurrence [1–3]. Vulnerabilities in network
software have led to the rapid proliferation of automated attack methods (worms, bot-
nets, viruses), and it is estimated that 25% of all personal computers may be infected
by malware [4]. Organizations are estimated to lose billions of dollars per year to mal-
ware [5], and single botnet was recently discovered that contained over a million hosts
and had caused over $20 million USD in economic losses [6].

Defending against attack traffic can be extremely challenging. The stealthy nature
of many attacks, where malicious hosts emulate the characteristics of well-behaved
traffic, limits the ability of any one host or network to detect or filter malicious activity
in isolation. In order to counter this emerging threat, previous work has proposed that
victim sitescollaborate to build a shared defense against attacks [7–10].

While the notion of victim collaboration has been previously proposed in the liter-
ature, the extent to which it improves the ability to detect and isolate malicious traf-
fic has not been rigorously evaluated. In order to design the most effective mitigation
techniques, and to determine how existing collaborative architectures would perform in



practice, we need to build an understanding of the sorts of workloads botnets generate
across different host sites. Building this understanding requires studying what botnet
activity looks like when viewed across several vantage points, and precisely how these
vantage points may monitor traffic and exchange informationto best isolate attacks.
To the best of our knowledge, our work is the first to directly measure the benefits of
victim cooperation on ISP-level traffic traces. In particular, we apply standard network
anomaly detectors to identify unwanted traffic, and analyzethe ability of a representa-
tive set of collaboration schemes to assist the victims in isolating and mitigating these
attacks.

Our measurement study is based on IP flow traces from GEANT, a European ISP
operated by a consortium of research and educational institutions. We used traces from
the twenty routers that make up GEANT’s Eurpean backbone network. Our data set
spans five months and contains roughly 24.4 billion individual flows. We used standard
anomaly detectors [11, 12] to identify in these traces unwanted traffic that collaborating
hosts and networks may wish to detect and remove, including DDoS, DoS, port scan-
ning, and IP scanning events. Our final results calculate thenumber and percentage of
attacks that could have been mitigated by a set of collaborating victim end-hosts.

To reduce probability of false positives, we correlate our detected anomalous events
with email spam logs from three domains. That is, our hypothesis is that a detected
anomaly, such as a port scan, is much less likely to be a false-positive if the port scan-
ning host also sent spam within some short period of time of the port scan. In our
experiements we set this interval to one hour in order to eliminative the vast majority of
DHCP changes [13].

Is this story better with Project-Honeypot/Spamhaus traces? What is the
change in our results?

Our experiments show that malicious hosts often have a high degree of fan-out, with
1% of attackers collectively attacking99% of victims. These high-profile attackers tend
to be visible to a wide number of victims, and our results indicate that if only100 vic-
tims participate, they can collectively block85% of their attacks via a blacklist-based
filtering mechanism. Second, malicious hosts arerepeat offenders, often attacking the
same set of hosts multiple times within a short period of time. This result indicates
that the blacklisting architecture should keep track of history of attacks, and we find
that keeping a small window of history is sufficient. Third, malicious hosts often al-
ternate between a wide range of malicious behavior, executing DDoS, scanning, and
spamming. This observation underscores the need for victims to performcross-class
collaborative filtering, in which victims maintain and share information about multiple
different attack types.

Roadmap: We start by presenting our data sources and methodology in Section 2. In
Section 3 we study the benefit of performingcross-class anomaly detection at a single
host. In Section 4 we investigate victim collaboration, both with and without cross-class
anomaly detection. We then briefly discuss related work in Section 5 and conclude in
Section 6.



2 Methodology

To evaluate the potential of victim collaboration for anomaly detection, we require a
large, representative set of unwanted traffic. We accomplish this by extracting attacker
IP addresses from several spam corpora, which we correlate with IP flow traces to de-
termine what other victims these attackers affected. Thesetraces and our procedure for
correlating them are described in Section 2.1. In addition,we wish to study the bene-
fit of victim collaboration across multiple types of attacks, which requires classifying
attack patterns from our IP flow traces. We leveraged anomalydetection techniques
presented in previous work [11, 12], which we describe in Section 2.2. Finally, some
hosts in the Internet are dynamically assigned IP addresses. Since we use IP addresses
to label attackers, some of our long-term results could be affected. In Section 2.3 we
describe how we designed our experiments to mitigate this effect.

2.1 Data Sources

Spam traces: We collected spam feeds from three large domains ranging over a five-
month period. Given that non-malicious hosts are unlikely to generate spam email (and
given that the vast majority of spam arises directly from malicious hosts [14, 3]), we
use this data set to extract IP addresses associated with malicious hosts. From these
feeds we extracted1.6 million malicious hosts. Our first spam feed is from a medium-
sized software company from which we received a total of6.6 million spam emails at
an average rate of7 500 spam emails per hour. Another of our large feeds includes a
log from anti-spam software from a large university in the United States. This data set
was collected over a shorter period of time in early 2008 and contained 302 thousand
spam emails. Our third feed was collected from a privately-owned “sinkhole” domain
specifically established to collect spam. This feed comprised 1.2 million spam emails
collected over a2-month period. As compared to [15, 3, 16], our combined sources
yielded8 million total spam emails (for a total of50 gigabytes) from which we extracted
1.6 million unique IP addresses.

NetFlow traces: Next, in order to understand the behavior of malicious hostsacross
the wide-area, we correlate the set of malicious host IP addresses from the spam feeds
with flow traces collected from the GEANT ISP network backbone [17]. The GEANT
network interconnects 30 National Research and Education Networks representing 34
countries across Europe. GEANT maintains multiple redundant connections to the In-
ternet and provides transit service to its customers. The network operation center rou-
tinely collects flow and routing information and make them available to the research
community. Each of the20 Geant routers samples 1-in-1000 packets and exports the
flow headers to a central collector using a NetFlow-like [18]format. In this paper we
used flow traces collected between October and December 2007. This data set rep-
resents264 gigabytes of flow header information, and we saw205 million distinct IP
addresses during this period.

Roughly 85% of the malicious IP addresses extracted from ourspam traces (which
we refer to henceforth asspammer IPs) were also found in our GEANT NetFlow traffic
traces. This was despite the fact that we only observe a smallfraction of all Internet
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Fig. 1: The amount of sampled traffic that we observe for the spammers visible in our flow
traces from Geant

traffic in the GEANT trace (since our trace only covers a single ISP, which heavily
samples its traffic). Moreover, we observed a large amount oftraffic directed from and
to these spammer IPs. Figure 1 shows the distribution of sampled packets observed
for a given spammer over the entire three months of flow traces. Our traces contain
at least 100 sampled packets for over 80% of hosts in our data set (i.e., an expected
100 thousand packets). We also note that an active minority of hosts sent millions of
sampled packets.

2.2 Anomaly Detectors

Collaborative network anomaly detection is not a new idea. Communal blacklists are
widely used to mitigate spam [19–22], and researchers have proposed leveraging victim
collaboration in response to other threats, such as worms [8] and other self-propagating
code [7]. Our study differs in that we wish to compare the benefit of victim collaboration
across multiple different types of anomalies. In order to dothis, we must first classify
attack behavior of malicious hosts into classes. This paperstudies four representative
kinds of attacks: IP scans, port scans, Denial of Service (DoS) attacks, and Distributed
Denial of Service (DDoS) attacks.

To identify these attacks, and to categorize attack patterns of malicious hosts, we
leverage mechanisms developed as part of previous work. To identify port scans, host
scans, and DoS attacks, we used what we coin “definitional anomaly detectors”. These
detectors precisely specify what constitutes an anomaly interms of observable features,
which means that every detected event has exactly the specified characteristics. For ex-
ample, to detect port scans, we leverage a method proposed in[12], which triggers a
detection whenever a given source IP address contacts more thanα different destina-
tion port numbers on a single destination IP address within a∆-second time window.
Definitional anomaly detectors have been used by previous work [23, 11]. We selected



these approaches to ensure that anomalies are precisely defined, to simplify understand-
ing of our results and to allow other researchers to exactly reproduce our results given
our data sets. To identify DDoS attacks, we leveraged the LADS algorithm designed
by Sekaret. al. [11]. LADS aims to be an efficient DDoS detection algorithm with low
operational complexity, and works by detecting volume anomalies in traffic traces. In
particular, LADS monitors for each host the number of flows inthe trace that have that
host as the destination. LADS then searches for periods of time when the number of
flows to a host exceeds a threshold numberα of standard deviations larger than the
average.

The description of our anomaly detectors would be incomplete if we did not specify
the values ofα (the threshold for detection) and∆ (the length of the time window).
In the case of the port scan detector, for example, this meansdetermining the number
of ports that must be contacted on a single host to qualify as aport scan. We chose to
tune these parameters by observing the distribution of the underlying parameter over
our Geant traffic trace. For example, the distribution of “number of times a source host
contactsα destination ports on a single destination IP address withina ∆-second time
window” is used to determine a threshold for our port-scanning detector. A part of this
specific distribution can be seen in

Type Definition n % Flows

DoS
More than n connections
initiated to a single destina-
tion host and port pair

200 0.038

DDoS
More thann inbound con-
nections initiated to a single
destination host

100 3.5e
−5

Port Scan
More than n destination
ports contacted on a single
host

25 0.012

IP Scan
More than n hosts con-
tacted

100 0.024

Table 1: Anomaly Detectors

Based on these distributions, we configure our anomaly detectors by selecting
thresholds that capture only the largest attacks. We do thisso as to focus our study on
the most significant attacks, and to limit the number of falsepositives. Moreover, our
anomaly detectors are only used to classify traffic behaviorof known spammers, further
reducing false positive rate. The precise specification of all our definitional anomaly de-
tectors can be seen in Table 1. Note that all definitions are given with respect to sampled
data. We chose to use a detection window length∆ of 1 minute. The fraction of IP flows
in our Geant trace that trigger detection The distribution of different types of attacks,
computed by applying our detectors to the flow data set, is shown in Table 2.

The very low fraction of flows that trigger detection (as shown in Table 1) indicates
that only genuine attacks are detected. However, there is still a possibility that a few



action DDoS DoS IPscanPortscan

# anomalous flows2.6e
6

7e
6

232e
6

1.7e
6

Table 2: Number of anomalous flows for various kinds of attacks

of our detected attacks are false positives. Quantifying the likelihood of false positives
by manually labeling each of the roughly 24.4 billion in our traces in order to discover
the ground truth does not seem tractable. Instead, we correlated the source IP addresses
of the detected attacks with the SpamHaus blacklist [21]. Only 12 % of our anomalous
flows were from source IPs that were not in the SpamHaus blacklist at the time of
the attack. Given that the SpamHaus blacklist is commonly trusted as being accurate
enough for widespread use (it is used to protect over 500 million email accounts [21])
false positives should provide little impact on our results.

2.3 Dynamic Addresses

Some of our results involve estimating the gain of sharingblacklists as a form of victim
collaboration. These blacklists contain IP addresses of hosts engaging in malicious be-
havior, so that remote networks, NIDS, and end hosts may block connections from these
hosts or give them lower priority. For example, an attacker IPχ that attacks a victimν
at some timet1 is blacklisted by our system at timet1, which means that an attack byχ

at some later timet2 will be deemed ineffective. However, if the IP addresses of some
of these attackers are dynamically assigned, then estimating this gain can be challeng-
ing. For example, if the IPχ is dynamically assigned, the host associated withχ at time
t1 may not be the same as the host associated withχ at timet2. This presents a prob-
lem, since well-behaved hosts may be erroneously denied access due to the blacklisting
scheme.

We minimize the chance that dynamic addressing will influence our results by lever-
aging a technique used by some DNSBLs to deal with this problem [21]. Namely, we
associate an expiry timeout with entries included in the blacklist. That is, instead of
permanently blocking (or reducing priority) of the attacker’s IP address, our approach
would only affect the attacker during the interval[t1 + ǫ, t1 +∆] where∆ is the “black-
list duration” parameter, which determines how long a an entry remains on the blacklist.

The use of the parameter∆ has two key benefits for our study. First, by tuning∆ to
a small value, this allows us to minimize the potential influence of dynamic addressing
on our experimental results. While tuning∆ to a small value also reduces the benefits
of collaboration, we later show that even relatively small values of∆ (i.e. smaller than
the vast majority of DHCP lease times [13]) still provides most of the benefits of col-
laboration. Secondly, incorporating∆ into our study allows us to explore its effects as
part of a real system. For example,∆ may provide a useful knob to enterprises lever-
aging a blacklisting scheme by allowing them to trade off thesecurity of the site with
inconvenience of customers that have inadvertently triggered a false-alarm detection.
Unless otherwise mentioned, our experiments measure the fraction of attacks that could
have been mitigated using blacklisting as a function of the duration parameter∆. To
set a reasonable default value for∆, we leverage the results of Xieet. al. [13], which



shows that over 95% of hosts retain their dynamic IP address for longer than one hour.
Our mitigation evaluation experiments that do not include∆ as an explicit parameter
therefore have it specifically set to one hour, which means that dynamic address issues
should not significantly influence our results.

3 Cross-Class Anomaly Detection

In this section we evaluate the benefit that asingle victim ν—an IP address that was
affected by the set of malicious hosts—can receive from cross-class IP blacklisting. We
start by studying attack patterns from the standpoint of a single victim host, and then
evaluate the benefit of performing cross-class anomaly detection at that host.

same victim.

Attack patterns at a single victim: Here, we study the entire set of attacks, across all
classes of attacks, observed at individual hosts. Our results indicate that a large frac-
tion of malicious hosts attack the same victim host many times. Thisrepeat-offender
phenomenon is shown in Figure 2(a). There are tens of thousands of instances where a
single victim is attacked repeatedly by a single attacker. There are also extreme cases
where a victim is attacked thousands of times by a single malicious attacker. Moreover,
there are victims that are attacked by millions of attackers. This can be seen from Fig-
ure 2(b), where we plot the number of unique attackers per victim. These facts bode
well for blacklist-based techniques—a single victim can mitigate a large fraction of
attacks by performing cross-class anomaly detection.

Benefit of cross-class anomaly detection:To characterize the benefit of perform-
ing cross-class anomaly detection at an individual host, wedefine a simple model of
a blacklisting scheme, and evaluate performance of that scheme on our traces. In our
model a malicious hostχ that attacks a victimν at timet1 is blacklisted for the next∆
hours, and hence any repeated attack byχ onν within ∆ hours is counted as ineffective
(or avoided). The number of ineffective attacks under this model is shown in Figure 3.
Each curve in the plot represents a different anomaly (DoS, DDoS, IP scan, and port
scan). The curve markedall plots the fraction of ineffective attacks if hosts perform
cross-class anomaly detection. Interestingly, we find thatblacklisting is substantially
more effective for certain anomalies than others. For example, DDoS attackers are much
less likely to return to the same victim within a short periodof time, greatly reducing
the effectiveness of blacklisting. DDoS attacks tended to comprise large bursts of flows
sent to hosts within a small time window, and hence the numberof times a particular
malicious host was observed within the window was smaller than for other kinds of at-
tacks. Overall, however, 70% of attacks could have been rendered ineffective if victims
blocked attackers for only an hour.

4 Victim Collaboration

Next, we study the benefit individual victims can gain bycollaborating, i.e., sharing
information about their blacklists. We first study the visibility of attacks across victims,
and then characterize the ability of hosts to cooperate to block these attacks.
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Fig. 2: Visibility of attack patterns at a single victim host

Attack patterns across victims: The effectiveness of victim collaboration is a func-
tion of three parameters. First, the distribution of the number of attacks per attacker
to a given victim, which we previously showed in Figure 2(a).Second, the number of
different victims that a single malicious host attacks is shown in Figure 4. If a mali-
cious host attacksk victims once each then the upper-bound on the number of attacks
that could have been prevented by victim collaboration isk − 1. Interestingly, there is
a wide variation in this number across hosts, meaning that some attackers can be more
easily rendered ineffective by collaboration than others.Finally, the fraction of victims
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that participate in the scheme also affects performance. Westudy sensitivity of this final
parameter below.

Benefit of victim collaboration:
To estimate benefit of victim collaboration we define the following model. A ma-

licious hostχ that attacks a victimνi ∈ V at time t1 is blacklisted for the next∆
hours, which means that any repeat attack byχ on any victimνj ∈ V within ∆ hours is
counted as ineffective.V represents the set of hosts that are participating in the blacklist
collaboration scheme. While this model represents a simplified generalization of a real



system, we define it thus so as to characterize expected behavior across a wide range of
collaboration techniques.
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Fig. 5: Effectiveness of cross-class victim collaboration

To upper-bound the potential gain of victim collaboration in our model, we first con-
sider the idealized scenario whereall hosts on the Internet collaborate. Results from this
experiment are shown in Figure 5(a), which indicates it is sufficient to blacklist attack-
ers for a mere 10 minutes to mitigate more than 90% of DoS, IP scans, and port scans.
Moreover, whereas Figure 3 indicates that blacklisting is not effective at mitigating



DDoS attacks when used by a single victim, it is much more effective in a collaborative
setting. Nearly 20% of DDoS events would have been mitigatedthrough blacklisting
attackers for 10 hours. While assuming all hosts collaborate is unrealistic, performing
in-network detection by a small number of cooperatingnetworks is known to have very
high visibility [24], and hence achieving a fraction of thisperformance might not be
inconceivable. Next, we also consider the more realistic scenario where only a subset
of victims participate. In Figure 5(b) we plot the fraction of attacks rendered ineffective
assuming then most victimized hosts collaborated. Here, we see that the vast major-
ity of one-to-one attacks (port scans, DoS) affect a small set of hosts. These victims
can collaborate to substantially mitigate these attacks. In fact,200 participants render
90% of attacks ineffective. One-to-many attacks (IP scans)and many-to-one attacks
(DDoS) need more participants, requiring tens of thousandsto approach 25% of IP
scans. Hence, to block these attacks, some form of network-level collaboration, where
network routers or NIDS work together to perform collaboration on behalf of hosts (and
thus gain benefit of large groups of hosts collaborating), seems necessary. Finally, we
note from the figure that there is an incremental benefit for hosts participating in the
scheme. Any non-participant is very likely to improve its own detection accuracy by
participating, providing a natural incentive to join, which may accelerate deployment.

5 Related Work

A great deal of research work has been done to allow enterprises and networks to cor-
relate observations from various vantage points in order toimprove anomaly detection.
The majority of this work has analyzed traffic traces and leveraged general statistical
techniques,e.g., [25, 26]. While these techniques have shown promise for intranet-
work anomaly detection, they have not been extended to cross-organizational settings
where there will be many more vantage points and thus the computational expense of
the correlation is much greater. The most well-known technique for such victim col-
laboration is the sharing of spam blacklists,e.g., [21, 22], but researchers have also
proposed leveraging victim collaboration in response to other threats such as worms [8]
and self-propagating code [7]. As far as we are aware, however, our work is the first
to evaluate the potential benefit of cross-organizational collaboration over a range of
relevant attacks. Our results motivate architectures suchas the one proposed in [10].

6 Conclusions

Given the extreme challenges in identifying and filtering unwanted traffic, some form of
victim collaboration seems necessary. This paper characterizes the ability of victims to
establish a shared defense against attacks, over a variety of attack types and workloads.
Towards this goal, we mine and correlate observations across several large data sets.
We also propose the use of cross-class collaboration to further increase the benefit of
victim collaboration.

Moving forward, we plan to pursue several key directions. First, some hosts and
networks may be unwilling to share certain kinds of traces and anomalies with each



other. We therefore plan to develop and evaluate a scalableprivacy-preserving architec-
ture [10], to detect correlations without forcing participants to reveal sensitive informa-
tion. Our other ongoing efforts involve collecting and correlating across a wider range
of traces, including botnet IRC logs and instant message spam.
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