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Abstract. Unwanted traffic is a serious problem for users and operatongt-
works. Collaboration amongst victim machines or networks, for example by ex-
changing lists of suspected attackers, has been proposedigate this prob-
lem. However, the performance of such techniques on reatriat traffic is not
well understood. Here, we improve upon this understandyraplrelating several
large spam corpora with flow traces from an ISP network, deigenalicious be-
havior of end hosts, and evaluating the ability of end-htzstoordinate to block
these attacks.

We have made several key findings. First, malicious hosenafttack many vic-
tims within relatively short time periods. Hence, collastion techniques that
maintain a small window of history work well, and are ofteiffisient to block
the majority of attacks. We found that small groups of 100edmmrative end-hosts

is enough to mitigate up t80% of anomalous events such as DoS or port scans.
Second, malicious hosts commonly alternate between a afmgelicious behav-

ior (including DDoS, scanning, and spamming). Based onfthding, we pro-
posecross-class anomaly detection, where hosts monitor and share infoomati
across different kinds of attacks, further increasing tedfits of collaboration.

1 Introduction

Unwanted traffic from malicious hosts is a tremendous pralitethe Internet today.
DDoS attacks, exploit scanning, email and instant-messagm, click fraud, and other
forms of malicious behavior are a common occurrence [1-3h&tabilities in network
software have led to the rapid proliferation of automate¢dckt methods (worms, bot-
nets, viruses), and it is estimated that 25% of all persomadputers may be infected
by malware [4]. Organizations are estimated to lose biliohdollars per year to mal-
ware [5], and single botnet was recently discovered thataioed over a million hosts
and had caused over $20 million USD in economic losses [6].

Defending against attack traffic can be extremely challegglhe stealthy nature
of many attacks, where malicious hosts emulate the chaistate of well-behaved
traffic, limits the ability of any one host or network to ddtecfilter malicious activity
in isolation. In order to counter this emerging threat, pyag work has proposed that
victim sitescollaborate to build a shared defense against attacks [7—10].

While the notion of victim collaboration has been previguysioposed in the liter-
ature, the extent to which it improves the ability to deteud ésolate malicious traf-
fic has not been rigorously evaluated. In order to design tbst effective mitigation
techniques, and to determine how existing collaboratighitectures would performin



practice, we need to build an understanding of the sorts okileads botnets generate
across different host sites. Building this understandeguires studying what botnet
activity looks like when viewed across several vantage {gpand precisely how these
vantage points may monitor traffic and exchange informatiobest isolate attacks.
To the best of our knowledge, our work is the first to directlgasure the benefits of
victim cooperation on ISP-level traffic traces. In partanylve apply standard network
anomaly detectors to identify unwanted traffic, and anatiieeability of a representa-
tive set of collaboration schemes to assist the victimsafaishg and mitigating these
attacks.

Our measurement study is based on IP flow traces from GEANTyrapean ISP
operated by a consortium of research and educationalitistis. We used traces from
the twenty routers that make up GEANT's Eurpean backbonearkt Our data set
spans five months and contains roughly 24.4 billion indiaidlows. We used standard
anomaly detectors [11, 12] to identify in these traces uriegtraffic that collaborating
hosts and networks may wish to detect and remove, includbg®) DoS, port scan-
ning, and IP scanning events. Our final results calculatatimeber and percentage of
attacks that could have been mitigated by a set of collaimgratctim end-hosts.

To reduce probability of false positives, we correlate cetedted anomalous events
with email spam logs from three domains. That is, our hypsithis that a detected
anomaly, such as a port scan, is much less likely to be a fadsgive if the port scan-
ning host also sent spam within some short period of time efgbrt scan. In our
experiements we set this interval to one hour in order toiekltive the vast majority of
DHCP changes [13].

Is this story better with Project-Honeypot/Spamhaus trace? What is the
change in our results?

Our experiments show that malicious hosts often have a kégheg of fan-out, with
1% of attackers collectively attackirg9% of victims. These high-profile attackers tend
to be visible to a wide number of victims, and our resultséati that if onlyl100 vic-
tims participate, they can collectively blo8k% of their attacks via a blacklist-based
filtering mechanism. Second, malicious hostsrepeat offenders, often attacking the
same set of hosts multiple times within a short period of tiffigis result indicates
that the blacklisting architecture should keep track ofdmisof attacks, and we find
that keeping a small window of history is sufficient. Thirdaliious hosts often al-
ternate between a wide range of malicious behavior, exagi@DoS, scanning, and
spamming. This observation underscores the need for \sdiinperformcross-class
collaborative filtering, in which victims maintain and seanformation about multiple
different attack types.

Roadmap: We start by presenting our data sources and methodologycitio8e2. In
Section 3 we study the benefit of performicrgss-class anomaly detection at a single
host. In Section 4 we investigate victim collaboration Hwwtith and without cross-class
anomaly detection. We then briefly discuss related work ictiSe 5 and conclude in
Section 6.



2 Methodology

To evaluate the potential of victim collaboration for andyndetection, we require a
large, representative set of unwanted traffic. We accoimhiis by extracting attacker
IP addresses from several spam corpora, which we correltitdRvilow traces to de-
termine what other victims these attackers affected. Ttrases and our procedure for
correlating them are described in Section 2.1. In additieawish to study the bene-
fit of victim collaboration across multiple types of attaclhich requires classifying
attack patterns from our IP flow traces. We leveraged anometgction techniques
presented in previous work [11, 12], which we describe intiac2.2. Finally, some
hosts in the Internet are dynamically assigned IP addreSgase we use IP addresses
to label attackers, some of our long-term results could bectgd. In Section 2.3 we
describe how we designed our experiments to mitigate thestef

2.1 Data Sources

Spam traces: We collected spam feeds from three large domains rangingaofree-
month period. Given that non-malicious hosts are unlikelgegnerate spam email (and
given that the vast majority of spam arises directly fromiaialis hosts [14, 3]), we
use this data set to extract IP addresses associated wittioualhosts. From these
feeds we extractetl.6 million malicious hosts. Our first spam feed is from a medium-
sized software company from which we received a totabdf million spam emails at
an average rate of 500 spam emails per hour. Another of our large feeds includes a
log from anti-spam software from a large university in theteeh States. This data set
was collected over a shorter period of time in early 2008 anttained 302 thousand
spam emails. Our third feed was collected from a privateied “sinkhole” domain
specifically established to collect spam. This feed coregris.2 million spam emails
collected over &-month period. As compared to [15, 3, 16], our combined sesirc
yielded8 million total spam emails (for a total 6 gigabytes) from which we extracted
1.6 million unique IP addresses.

NetFlow traces: Next, in order to understand the behavior of malicious hastess
the wide-area, we correlate the set of malicious host |Pesdais from the spam feeds
with flow traces collected from the GEANT ISP network backé¢h7]. The GEANT
network interconnects 30 National Research and Educatewadiks representing 34
countries across Europe. GEANT maintains multiple redahdannections to the In-
ternet and provides transit service to its customers. Theark operation center rou-
tinely collects flow and routing information and make thenailble to the research
community. Each of th€0 Geant routers samples 1-in-1000 packets and exports the
flow headers to a central collector using a NetFlow-like [fiBmat. In this paper we
used flow traces collected between October and December. 200 data set rep-
resent264 gigabytes of flow header information, and we s2% million distinct IP
addresses during this period.

Roughly 85% of the malicious IP addresses extracted fronspam traces (which
we refer to henceforth egpammer |Ps) were also found in our GEANT NetFlow traffic
traces. This was despite the fact that we only observe a $raation of all Internet



1 :
0.9r 1
0.8f 1
0.7r 1
0.6 y
0.5r b
0.4r a
0.3r §
0.2r N
0.1p ' 1

I I I I
0 2 8 10

10° 10 10° 10° 10 10
# sampled packets per spammer

CDF

Fig. 1: The amount of sampled traffic that we observe for the spammers visible in our flow
traces from Geant

traffic in the GEANT trace (since our trace only covers a ni@P, which heavily
samples its traffic). Moreover, we observed a large amoutnafifc directed from and
to these spammer IPs. Figure 1 shows the distribution of Eahyackets observed
for a given spammer over the entire three months of flow tra®es traces contain
at least 100 sampled packets for over 80% of hosts in our datf.e, an expected
100 thousand packets). We also note that an active mindritypsts sent millions of
sampled packets.

2.2 Anomaly Detectors

Collaborative network anomaly detection is not a new ideam@unal blacklists are
widely used to mitigate spam [19-22], and researchers hamped leveraging victim
collaboration in response to other threats, such as worhaBother self-propagating
code [7]. Our study differs in that we wish to compare the fieaEvictim collaboration
across multiple different types of anomalies. In order tahds, we must first classify
attack behavior of malicious hosts into classes. This psjlies four representative
kinds of attacks: IP scans, port scans, Denial of Servic&jdtacks, and Distributed
Denial of Service (DDoS) attacks.

To identify these attacks, and to categorize attack patefrmalicious hosts, we
leverage mechanisms developed as part of previous worldertify port scans, host
scans, and DoS attacks, we used what we coin “definitionahatyodetectors”. These
detectors precisely specify what constitutes an anomadgrims of observable features,
which means that every detected event has exactly the sgkckaracteristics. For ex-
ample, to detect port scans, we leverage a method propogéd]invhich triggers a
detection whenever a given source IP address contacts e tdifferent destina-
tion port numbers on a single destination IP address withiitsecond time window.
Definitional anomaly detectors have been used by previouk (28, 11]. We selected



these approaches to ensure that anomalies are preciselgdlat simplify understand-
ing of our results and to allow other researchers to exaeftyaduce our results given
our data sets. To identify DDoS attacks, we leveraged the $Alorithm designed
by Sekaret. al. [11]. LADS aims to be an efficient DDoS detection algorithnthwiow
operational complexity, and works by detecting volume aalis in traffic traces. In
particular, LADS monitors for each host the number of flowthia trace that have that
host as the destination. LADS then searches for periodsna When the number of
flows to a host exceeds a threshold numbesf standard deviations larger than the
average.

The description of our anomaly detectors would be inconepfete did not specify
the values ofr (the threshold for detection) and (the length of the time window).
In the case of the port scan detector, for example, this méetesmining the number
of ports that must be contacted on a single host to qualify@srtascan. We chose to
tune these parameters by observing the distribution of titeetlying parameter over
our Geant traffic trace. For example, the distribution ofrfriner of times a source host
contacts destination ports on a single destination IP address withinsecond time
window” is used to determine a threshold for our port-scagmietector. A part of this
specific distribution can be seen in

Type |Definition | n |% Flows
More than n connections
DoS |initiated to a single desting200| 0.038
tion host and port pair
More thann inbound con}
DDoS |nections initiated to a sing|&00| 3.5¢~°
destination host
More than n destination
Port Scamports contacted on a singla5 | 0.012
host
More than n hosts cont

IP Scan tacted 100| 0.024

Table 1: Anomaly Detectors

Based on these distributions, we configure our anomaly tetedy selecting
thresholds that capture only the largest attacks. We dasthas to focus our study on
the most significant attacks, and to limit the number of fgesitives. Moreover, our
anomaly detectors are only used to classify traffic behafiknown spammers, further
reducing false positive rate. The precise specificatiotl ol definitional anomaly de-
tectors can be seen in Table 1. Note that all definitions aengvith respect to sampled
data. We chose to use a detection window lengjtbf 1 minute. The fraction of IP flows
in our Geant trace that trigger detection The distributibdiierent types of attacks,
computed by applying our detectors to the flow data set, igslio Table 2.

The very low fraction of flows that trigger detection (as shawTable 1) indicates
that only genuine attacks are detected. However, therdlis tossibility that a few



action |DDoS|DoS]|IPscafPortscan
# anomalous flow.6¢° [ 7¢° [232¢° | 1.7¢°

Table 2: Number of anomalous flows for various kinds of attacls

of our detected attacks are false positives. Quantifyirdikelihood of false positives
by manually labeling each of the roughly 24.4 billion in otades in order to discover
the ground truth does not seem tractable. Instead, we atetethe source IP addresses
of the detected attacks with the SpamHaus blacklist [21ly @2% of our anomalous
flows were from source IPs that were not in the SpamHaus li$aclkl the time of
the attack. Given that the SpamHaus blacklist is commonly trusted @sgbeccurate
enough for widespread use (it is used to protect over 500omiémail accounts [21])
false positives should provide little impact on our results

2.3 Dynamic Addresses

Some of our results involve estimating the gain of shablagklists as a form of victim
collaboration. These blacklists contain IP addresses sthengaging in malicious be-
havior, so that remote networks, NIDS, and end hosts makioenections from these
hosts or give them lower priority. For example, an attackey that attacks a victiny
at some time is blacklisted by our system at timig, which means that an attack gy
at some later time, will be deemed ineffective. However, if the IP addressesofis
of these attackers are dynamically assigned, then estightitis gain can be challeng-
ing. For example, if the IR is dynamically assigned, the host associated witt time
t; may not be the same as the host associated yihtimet,. This presents a prob-
lem, since well-behaved hosts may be erroneously deniegbaciue to the blacklisting
scheme.

We minimize the chance that dynamic addressing will infleemar results by lever-
aging a technique used by some DNSBLs to deal with this prolj2d]. Namely, we
associate an expiry timeout with entries included in theklat. That is, instead of
permanently blocking (or reducing priority) of the attackéP address, our approach
would only affect the attacker during the inter{ial+ ¢, t; + A] whereA is the “black-
list duration” parameter, which determines how long a anyeeimains on the blackilist.

The use of the parametér has two key benefits for our study. First, by tunidgo
a small value, this allows us to minimize the potential infice of dynamic addressing
on our experimental results. While tuniafjto a small value also reduces the benefits
of collaboration, we later show that even relatively smalues ofA (i.e. smaller than
the vast majority of DHCP lease times [13]) still providessnof the benefits of col-
laboration. Secondly, incorporating into our study allows us to explore its effects as
part of a real system. For exampl&,may provide a useful knob to enterprises lever-
aging a blacklisting scheme by allowing them to trade offgkeurity of the site with
inconvenience of customers that have inadvertently triggdy@ false-alarm detection.
Unless otherwise mentioned, our experiments measureabgdn of attacks that could
have been mitigated using blacklisting as a function of theation parameten. To
set a reasonable default value far we leverage the results of Xat. al. [13], which



shows that over 95% of hosts retain their dynamic IP addmgdsfiger than one hour.

Our mitigation evaluation experiments that do not incluti@s an explicit parameter
therefore have it specifically set to one hour, which meaatsdiinamic address issues
should not significantly influence our results.

3 Cross-Class Anomaly Detection

In this section we evaluate the benefit thadirgle victim v—an IP address that was
affected by the set of malicious hosts—can receive fromseobess IP blacklisting. We
start by studying attack patterns from the standpoint ohglsivictim host, and then
evaluate the benefit of performing cross-class anomalyctieteat that host.

same victim.

Attack patterns at a single victim: Here, we study the entire set of attacks, across all
classes of attacks, observed at individual hosts. Ourteesudicate that a large frac-
tion of malicious hosts attack the same victim host many sinfdis repeat-offender
phenomenon is shown in Figure 2(a). There are tens of thdgsafrinstances where a
single victim is attacked repeatedly by a single attackber@ are also extreme cases
where a victim is attacked thousands of times by a singleamails attacker. Moreover,
there are victims that are attacked by millions of attack€hés can be seen from Fig-
ure 2(b), where we plot the number of unique attackers pdimviclhese facts bode
well for blacklist-based techniques—a single victim cartigaite a large fraction of
attacks by performing cross-class anomaly detection.

Benefit of cross-class anomaly detection:To characterize the benefit of perform-
ing cross-class anomaly detection at an individual hostdefene a simple model of
a blacklisting scheme, and evaluate performance of thamselon our traces. In our
model a malicious host that attacks a victiny at timet, is blacklisted for the next\
hours, and hence any repeated attack loy  within A hours is counted as ineffective
(or avoided). The number of ineffective attacks under this model is showFigure 3.
Each curve in the plot represents a different anomaly (Dd3Q® IP scan, and port
scan). The curve markedll plots the fraction of ineffective attacks if hosts perform
cross-class anomaly detection. Interestingly, we find litetklisting is substantially
more effective for certain anomalies than others. For exeDoS attackers are much
less likely to return to the same victim within a short peraddime, greatly reducing
the effectiveness of blacklisting. DDoS attacks tendedtogrise large bursts of flows
sent to hosts within a small time window, and hence the nurab8mes a particular
malicious host was observed within the window was smallen flor other kinds of at-
tacks. Overall, however, 70% of attacks could have beerereddneffective if victims
blocked attackers for only an hour.

4 Victim Collaboration

Next, we study the benefit individual victims can gain dm}laborating, i.e., sharing
information about their blacklists. We first study the vibfi of attacks across victims,
and then characterize the ability of hosts to cooperatedckthese attacks.
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Fig. 2: Visibility of attack patterns at a single victim host

Attack patterns across victims: The effectiveness of victim collaboration is a func-
tion of three parameters. First, the distribution of the bemof attacks per attacker
to a given victim, which we previously showed in Figure 2@&cond, the number of
different victims that a single malicious host attacks isveh in Figure 4. If a mali-
cious host attacks victims once each then the upper-bound on the number okattac
that could have been prevented by victim collaboratiok is 1. Interestingly, there is

a wide variation in this number across hosts, meaning thmesattackers can be more
easily rendered ineffective by collaboration than othEnsally, the fraction of victims
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that participate in the scheme also affects performancestUdy sensitivity of this final
parameter below.
Benefit of victim collaboration:

To estimate benefit of victim collaboration we define thedaihg model. A ma-
licious hosty that attacks a victim; € V at timet; is blacklisted for the nextA
hours, which means that any repeat attaclmn any victimy; € V within A hours is
counted as ineffectivéd/ represents the set of hosts that are participating in treklida
collaboration scheme. While this model represents a sfiaglgeneralization of a real



system, we define it thus so as to characterize expectedibehavoss a wide range of
collaboration techniques.
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To upper-boundthe potential gain of victim collaboration in our model, wesficon-
sider the idealized scenario whetéhosts on the Internet collaborate. Results from this
experiment are shown in Figure 5(a), which indicates it figant to blacklist attack-
ers for a mere 10 minutes to mitigate more than 90% of DoS, dRss@nd port scans.
Moreover, whereas Figure 3 indicates that blacklistingds effective at mitigating



DDosS attacks when used by a single victim, it is much morecéffe in a collaborative
setting. Nearly 20% of DDoS events would have been mitigétealugh blacklisting
attackers for 10 hours. While assuming all hosts collalasatinrealistic, performing
in-network detection by a small number of cooperatistyvorksis known to have very
high visibility [24], and hence achieving a fraction of thierformance might not be
inconceivable. Next, we also consider the more realisémado where only a subset
of victims participate. In Figure 5(b) we plot the fractiohattacks rendered ineffective
assuming thex most victimized hosts collaborated. Here, we see that teemajor-
ity of one-to-one attacks (port scans, DoS) affect a smalbséosts. These victims
can collaborate to substantially mitigate these attack$adt, 200 participants render
90% of attacks ineffective. One-to-many attacks (IP scans) many-to-one attacks
(DD0S) need more participants, requiring tens of thousaadspproach 25% of IP
scans. Hence, to block these attacks, some form of netvewek-tollaboration, where
network routers or NIDS work together to perform collabmmabn behalf of hosts (and
thus gain benefit of large groups of hosts collaborating@msenecessary. Finally, we
note from the figure that there is an incremental benefit fathparticipating in the
scheme. Any non-participant is very likely to improve itsrodetection accuracy by
participating, providing a natural incentive to join, whimay accelerate deployment.

5 Related Work

A great deal of research work has been done to allow entegpaisd networks to cor-
relate observations from various vantage points in ordenpwove anomaly detection.
The majority of this work has analyzed traffic traces anddaged general statistical
techniquesge.g., [25,26]. While these techniques have shown promise foairet-
work anomaly detection, they have not been extended to-cngssnizational settings
where there will be many more vantage points and thus the atatipnal expense of
the correlation is much greater. The most well-known teghaifor such victim col-
laboration is the sharing of spam blacklistsy., [21, 22], but researchers have also
proposed leveraging victim collaboration in response beothreats such as worms [8]
and self-propagating code [7]. As far as we are aware, hayweue work is the first
to evaluate the potential benefit of cross-organizationhboration over a range of
relevant attacks. Our results motivate architectures aa¢he one proposed in [10].

6 Conclusions

Given the extreme challenges in identifying and filteringvanted traffic, some form of
victim collaboration seems necessary. This paper chaiaesehe ability of victims to
establish a shared defense against attacks, over a vafrigtack types and workloads.
Towards this goal, we mine and correlate observations a@egeral large data sets.
We also propose the use of cross-class collaboration thefumcrease the benefit of
victim collaboration.

Moving forward, we plan to pursue several key directionsst-isome hosts and
networks may be unwilling to share certain kinds of tracesd anomalies with each



other. We therefore plan to develop and evaluate a scabaibviacy-preserving architec-
ture [10], to detect correlations without forcing parti&iyis to reveal sensitive informa-
tion. Our other ongoing efforts involve collecting and @ating across a wider range
of traces, including botnet IRC logs and instant messagaspa
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