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ABSTRACT

Multiple network-wide anomaly detection techniques pro-
posed in the literature define an anomaly as a statistical
outlier in aggregated network traffic. The most popular way
to aggregate the traffic is as a Traffic Matriz, where the
traffic is divided according to its ingress and egress points in
the network. However, the reasons for choosing traffic ma-
trices instead of any other formalism have not been studied
yet. In this paper we compare three network-driven traf-
fic aggregation formalisms: ingress routers, input links and
origin-destination pairs (i.e. traffic matrices). Each formal-
ism is computed on data collected from two research back-
bones. Then, a network-wide anomaly detection method is
applied to each formalism. All anomalies are manually la-
beled, as a true or false positive. Our results show that the
traffic aggregation level has a significant impact on the num-
ber of anomalies detected and on the false positive rate. We
show that aggregating by OD pairs is indeed the most ap-
propriate choice for the data sets and the detection method
we consider. We correlate our observations with time se-
ries statistics in order to explain how aggregation impacts
anomaly detection.

Categories and Subject Descriptors

C.2 [Computer-communication networks]: Network Op-
erations— Network monitoring, Network management
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1. INTRODUCTION

Detecting unexpected changes in traffic patterns is a topic
which has recently received much attention from the net-
work measurement community. These anomalous changes
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do not only impact network performance, but sometimes
represent security threats to users. Building anomaly detec-
tion systems is the first step towards securing the Internet,
but recent research has proven this to be a very challenging
problem.

We study a family of anomaly detection methods that op-
erates in three steps, which correspond to three successive
passes of data reduction. First, network statistics are col-
lected on all network links in the form of flow descriptors.
Second, flow descriptors are transformed into a set of time
series. This transformation requires to pick (1) a network-
wide aggregation format and (2) a set of features (in our
case, entropy of IP addresses and port numbers). The final
step consists in isolating abnormal events using one statisti-
cal outlier detection algorithm to the time series. This paper
focuses on the second step, and more exactly on the analysis
of the impact of the network-wide aggregation formalism on
the anomaly detection step.

Since the anomaly detection is performed by extracting
statistical outliers from normal traffic, we intuitively ex-
pect that if too many flows are aggregated, only the bigger
anomalies will be visible. On the other hand if flows are
unevenly dispersed in many time series, the statistical noise
level is high, and thus too many meaningless events will be
interpreted as anomalies.

Previous papers on network-wide anomaly detection [5,
10, 12] have demonstrated the efficiency of various statistical
anomaly detection techniques. All these techniques detect
anomalies in the Traffic Matriz time series, i.e. the time
series of traffic between each pair of origin and destination
routers in the network. In [5], the motivation for using the
traffic matrix was to facilitate the detection of the entry and
exit point of the anomaly into the network. The downside of
traffic matrices is the complexity of their computation. But
traffic matrix is not the only formalism. Other have suc-
cessfully applied network-wide anomaly detection on input
links [12] or random aggregation [6].

In this work we study the influence of three different aggre-
gation formalisms on the anomalies discovered by an entropy
based Kalman filter approach [10]. The formalisms in this
work naturally emerge from network perspective, i.e., input
links, ingress routers, and the traffic matrix formalisms. We
validate the anomaly detection results on one week of mea-
surements collected in November 2005 on GEANT and Abi-
lene, respectively the European and U.S. research networks.
The data collected include routing and flow information for
both networks. These data sets were measured under com-



pletely different data-reduction parameters (i.e. sampling
rate, temporal aggregation and IP anonymization level).

Over 3 500 anomalies were discovered in our data sets. We
validate the accuracy of the detection on each formalism by
inspecting all anomalies manually in order to extract the
false positive rate. As a result of this work, we were able
to: (1) compare different formalisms using the exact same
method parameters, (2) better understand one key factor
impacting anomaly detection, and (3) correlate this impact
with metrics and characteristics from the data sets produced
by each formalism.

The paper is organized as follows. Section 2 describes the
complete methodology we used to measure the accuracy of
different traffic formalisms. In Section 3 we present the re-
sults of our experiments and analyze them through different
metrics. Finally, Section 4 concludes the paper and summa-
rizes our findings.

2. EXPERIMENTAL METHODOLOGY

2.1 Data collection

Both Abilene [1] and GEANT [2] are well known in the
measurement community. Abilene has 11 Points of Presence
(PoPs) that provide connectivity to research and academic
networks in the United States. GEANT is the European re-
search network. It is composed of 22 PoPs. It interconnects
national research networks and connects to the Internet.

Both networks collect routing information and sampled
traffic statistics on input links. Abilene collects routing in-
formation through multiple Zebra BGP monitors connected
to each router. GEANT has one single Zebra BGP monitor
which is part of the BGP mesh. In both cases, the BGP
monitors record all BGP updates. Both networks use Ju-
niper routers (flow statistics are recorded using cflowd). We
collected and sanitized a week of full data for both networks
in November of 2005.

As we mentioned in the introduction, the two networks
use different values for measurement parameters, i.e. sam-
pling rate, time aggregation and IP address anonymization.
Table 1 summarizes these values. We have evidences that
these parameters impact anomaly detection, as shown for ex-
ample in [7, 4] who studied the influence of sampling rates
on anomaly detection. The analysis of the impact of these
parameters is outside the scope of this paper. However, for
one of our experiments, and in order to compare the two
networks in equivalent conditions, we have also re-sampled
Abilene and then aggregated its information in 15 min time
bins. Since NetFlow traces lose the information about indi-
vidual packet arrivals, the best we can do is randomly sample
each of the packets in the trace. We have anonymized the
last 11 bits of GEANT’s IP addresses.

Another source of difference between anomalies detected
in Abilene and GEANT comes from the nature of traffic
demands in each network. For instance, GEANT provides
Internet transit service to its customers while Abilene does
not. Understanding the impact of traffic nature is complex,
and outside the scope of this paper.

2.2 Traffic aggregation formalisms

Given a set of network-wide flow records, we can build dif-
ferent aggregation formalism. Even though one may choose
any arbitrary aggregation scheme, we choose to focus on
three specific mappings that have natural interpretations in

Abilene | GEANT

IP anonymization 11 bits None

Time aggregation 5 min 15 min
Packet sampling || 1/100 1/1000

Table 1: Data-reduction parameters for each net-
works

Abilene | GEANT
Ingress Routers 11 22
Input links 187 77
Traffic Matrix 121 484

Table 2: Number of time series per formalism

the context of networks and correspond to three levels of
aggregation: ingress routers, input links, and the traffic ma-
triz (also known as Origin-Destination pairs in [8]). Next,
we describe each of these traffic aggregation schemes in more
detail.

Ingress routers. The flow statistics are collected within
each router and periodically sent to a storage point. The
simplest way to aggregate data consists of aggregating the
flows by the router where they were collected. This scheme
has the nice property of being very easy to implement. The
amount of time series to be analyzed is the total number
of ingress routers in the network. In large-scale networks,
ingress routers aggregate large amounts of traffic. Given
that entropy is a measure of the distribution of the values of
a given feature, heavy aggregation can make it difficult to
catch a small variation hidden by a normal variation on the
remaining portion of the traffic [11].

Input links. Together with flow information, routers also
record the SNMP index of the incoming interface, which al-
lows us to aggregate the traffic per link, i.e. (ingress router,
input interface) pair. In this formalism, the data is less
aggregated than in ingress routers, but there is also an in-
creased number of time series that must be processed by the
anomaly detection algorithm. Another advantage of input
link aggregation is that it allows the ISP to immediately
identify the interface on which an anomaly is detected and
to block the corresponding traffic.

Traffic Matrix. Flows are aggregated according to the
routers they enter and leave the network. Finding the egress
router though requires to perform a routing look up on each
flow, which (1) requires to collect routing information and
(2) adds a significant computation overhead. This formal-
ism has first been successfully used to detect anomalies by
Lakhina et al. [5].

Table 2 summarizes the total number of time series that
result from the three different traffic aggregation schemes.
There are two noticeable differences between the two net-
works: in GEANT the number of OD-flows exceed the num-
ber of input links while not in Abilene ; and despite GEANT
is much larger than Abilene (in traffic volume and PoP num-
ber), Abilene has a higher number of input links.

Figure 1 provides a general comparison of the flow vari-
ability in each data set. We compute the coefficient of vari-
ation, i.e. the ratio between the standard deviation and the
mean of the number of flows for each of the time series in
a formalism. The coefficient of variation is a standard met-
ric for comparing variability in data sources with different



means. Intuitively, a large coefficient of variation is found
on time series with high variance and small mean, such as in
small and bursty links. Each plot shows the cumulative dis-
tribution functions for this metric over the time series in a
given formalism. Ingress routers have the smallest flow vari-
ability among all formalisms. This is a direct consequence
of the large amount of aggregation in those inputs, which
makes the traffic fluctuations seem irrelevant near the total
amount of traffic. What is most interesting to notice is that
variability of input links seems greater than OD pairs. In
Section 3 we relate that high variability with the incidence
of false positives in anomaly detection.

2.3 Statistical anomaly detection

Given a traffic aggregation model, we are interested in ex-
tracting features that can ease the statistical outlier detec-
tion. Each aggregate is represented by time series of entropy
values computed on four IP header fields, namely source and
destination IP addresses and port numbers. Lakhina et al.
established in [5] that a significant variation in entropy is an
effective way to identify the presence of an anomaly in the
data set.
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Figure 1: Variability of the number of flows across
multiple formalisms.

We are interested in anomaly detection methods which
extract statistical outliers in entropy multivariate time se-
ries. We choose Kalman based approach described in [10] as
a representative of this class of methods. Another very pop-
ular method in this class is the subspace method proposed
in [5]. We have favored the Kalman filter over the sub-
space method because our previous experience has shown
that there are still some open issues in the calibration of
PCA parameters [9]. A similar study of aggregation for-
malisms with PCA and possibly other detection techniques
is left for future work.

Intuitively, the Kalman filter works by modeling the traffic
as a multivariate linear model, exploiting both the spatial
and time correlation available in the data. At any point
in time, one can use the model to predict the next values
of the time series and compare those predictions against the
actual measurements. If the prediction error is too high com-
pared to the expected variance in the data, then a statistical
anomaly is signaled at the space-time point where that con-
dition is true. We refer to [10] for a more formal and detailed
description of the method. All the results presented in this
paper use a Kalman threshold of 60 as suggested in [10].
This threshold detects a decent number of anomalies with a
low false positive rate. The study of higher thresholds gives
similar results and was not included to preserve space.

2.4 Manual labeling

We obtained a total of 3541 statistical anomalies. All
anomalies were manually inspected by one of the authors
and labeled as true or false positive.

To make manual labeling easier and more reliable, we
have designed a web based tool called WebClass [3]. We-
bClass receives the original traffic time series together with
entropy values and the list of statistical anomalies computed
by Kalman (WebClass is not a detection tool but a presen-
tation tool). For each time bin (including those where an
anomalous time bin has been identified), WebClass can dis-
play (1) the four features entropy time series, (2) packet,
flow and byte count, and (3) top n flows counting for the
largest amount of traffic. The labeler can pick any anoma-
lous time bin, display detailed flow information for multiple
consecutive time bins around the anomaly, zoom in/out, or
scroll.

False positives are defined as statistical anomalies for which
the labeler could not find a flow (or set of flows) that matches
the observed entropy and volume variation in the four fea-
tures displayed by WebClass. This label is then stored in
the WebClass database with notes on why it was qualified
as a true or false positive, and with the name of the labeler.
WebClass then automatically selects the next anomaly to
be labeled. With this tool an acquainted user can quickly
match entropy changes with anomalous flows with a high
level of confidence.

False negatives are real traffic anomalies for which Kalman
did not detect a statistical anomaly; they are not studied in
this work because the detection of false negative requires the
systematic inspection of all time bins for every formalism
and network, i.e., over one million time bins.

Thanks to WebClass, our data set, detection method and
anomaly labeling can be shared and reused by other re-
searchers. WebClass could help compare anomaly detection
techniques, or verify previous results.

3. ANALYSIS OF RESULTS

In this section we analyze the results of our experiments
on traffic data from Abilene and GEANT. We should empha-
size that even though we present results for two distinct net-
works, we do not intend to provide a thorough comparison of
anomaly detection in different networks. As we mentioned
in the previous sections, there are numerous differences be-
tween Abilene and GEANT data, from measurement param-
eters to customer demands. Still, we verify that most of the
observations are consistent across networks. Analyzing two
networks should reduce the biases that would be expected
from analyzing a single data set, and increase the confidence
in our observations.

Performance of aggregation formalisms.

Figure 2 summarizes the results of the performance met-
rics we consider for each network and formalism. The plots
show the total number of anomalies found in each data set,
and the percentage of detections which correspond to false
alarms, i.e., the false positive rate.

In Figure 2(b) the false positive rates for ingress routers
are less than 2% in both networks. This would be a remark-
able result if it were not for the fact that the total number of
detections (and consequently the number of true positives)
is much smaller than in all other formalisms. Intuitively, the
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Figure 2: Performance of different formalisms in
Abilene and GEANT.

Formalism ” Abilene | GEANT |

Ingress routers 0% 0%
Input links 68% 39%
Traffic Matrix 44% 76%

Table 3: Fraction of anomalies detected only in one
formalism.

small number of detections in ingress routers comes from the
fact that the time series of traffic are too much aggregated.
More precisely, many anomalies are hidden within the bigger
fluctuations of traffic.

Dividing the traffic by input interfaces is a straightforward
way to reduce the level of aggregation. Indeed, it can be seen
in Figure 2(a) that for Abilene data, there are over 20 times
more statistical anomalies with input links than with ingress
routers. This increase is not as impressive for GEANT data,
where it is only a factor of four. This difference between the
two networks can be attributed to multiple reasons. First of
all, according to Table 2, there are many more time series
(i.e., input links) in Abilene than in GEANT. Second, as
we mentioned in Section 2.1 and Table 1, different measure-
ment parameters across networks play an important role in
anomaly detection metrics.

Despite having a higher number of detections than ingress
routers, input links also display the highest false positive
rates among all formalisms. Such false positive rates go as
high as 53% with the original parameters of Abilene. That
is clearly unacceptable for any detection scheme, since each
false alarm would need to be verified by a human operator.

The traffic matrix formalism detects a large number of sta-
tistical anomalies, together with a small false positive rate.
Nevertheless, the false positive rate for the traffic matrix in
GEANT seems somewhat higher than that of Abilene. Fur-
ther in this section, we identify the main causes for the false
positives in our data sets.

Table 3 displays the number of true positives that were
detected in one formalism but not in the other two for each
network. First, all the anomalies discovered in the ingress
routers were also discovered using either input links or traffic
matrix. This proves that the level of aggregation is too high
in ingress routers. Second, the input links or traffic matrix
formalism do detect different anomalies. The analysis of
these differences has been kept for future work.

Impact of data-reduction parameters.
The plots in Figure 3 correspond to the same perfor-

mance metrics evaluated in Figure 2 after having brought
both networks to the same parameters in all formalisms.
More precisely, we process the original data sets to have the
same monitoring parameters as explained in Section 2.1, i.e.
1/1000 sampling, 15 minutes of time aggregation and 11 bits
of IP anonymization. After this step, the total number of
detections becomes much more consistent among the two
networks. This suggests that the levels of packet sampling
and time aggregation performed originally in GEANT have
a serious impact in the number of detections in input links.
It also suggests that our comparison and methodology are
meaningful.

While reduced from 50 % to 30 % the number of false pos-
itives in Abilene’s input links is still at an unacceptable level
for an operational network. Even though the data-reduction
parameters impact the anomaly detection, it is not the only
important factor.
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Figure 3: Performance of formalisms after reducing
the measurement parameters to the same level.

Impact of aggregation on anomaly size.

Figure 4 shows the results of an experiment to assess how
the increased level of aggregation in ingress routers makes
anomalies less noticeable. For each network, we consider the
sets of anomalies found in either the input links or the traffic
matrix. Let ¢ represent a particular input in one formalism,
i.e. an input link or an OD pair in the Traffic Matrix. Also,
let ¢ be a time bin where a statistical anomaly was detected.
If pi is the number of packets measured on time bin ¢t and
input 4, then we compute the following value:

1 7
ri= pimpi] (1)
max {p}, pj_; }

This measures the relative deviation in the number of pack-
ets to the maximum between the current and previous time
bins. Taking the absolute value on the numerator and the
maximum value in the denominator enables us to analyze
both increases and decreases with a single metric.

Given that any packet seen on input links or the traffic
matrix formalisms can also be found with ingress routers,
we can also estimate the relative size of the anomaly in the
ingress router formalism. This can be done by replacing the
denominator of (1) by the equivalent value measured over
the time series in the corresponding ingress router.

We realize that the method we use, as described in Sec-
tion 2.3, deals with time series of entropy values instead of
packet counts. Nevertheless, the variations in entropy often
correspond to events which increase or reduce the number
of packets.



Figure 4 shows that in the Abilene data set there is a large
decrease in the relative size of most anomalies with ingress
routers. For the GEANT plots, the difference is less evi-
dent, particularly with the input links formalism. It clearly
explains why, on Figure 2, the increase in the number of
detections from ingress routers to input links is not as pro-
nounced in GEANT as it is in Abilene.
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Figure 4: Ratio of the size of the anomalies vs the
traffic on Abilene and GEANT.

Impact of small inputs on the false positive rate.

Figure 5 compares the input links and traffic matrix for-
malisms in Abilene and GEANT. For each data set, the cor-
responding plot has its inputs (i.e. input links or OD pairs)
sorted on the x-axis according to size, measured as the total
number of packets during the full week of the trace. One
of the curves in each plot shows the cumulative distribution
for the input size. The other two represent the complemen-
tary distribution functions for the number of true and false
positives by input.

The plots 5(a) and 5(b) illustrate that at least 90% of the
false positives are detected on input links which contributed
to less than 2.5% of the total number of packets in Abilene
and 3.5% of those in GEANT. On the other hand, for the
traffic matrix of Abilene, the very few false positives that
are found, are relatively well spread across the different OD
pairs. This spread matches the finding from figure 1 where
the variability of the traffic matrix in Abilene is smaller than
that of GEANT leading to a smaller false positive rate. Fi-
nally, the traffic matrix from GEANT on Figure 5(d) seems
to concentrate most of the traffic on a few popular OD pairs.
That can explain why the false positive rate is much higher
in GEANT than in Abilene (respectively 12% versus 1%).

Intuitively, the problem with small inputs (either links or
OD pairs) is that even very small events can cause large
deviations from the expected behavior. Recall that the gen-
eral formulation of statistical anomaly detection (with which
the Kalman filter method is compatible) is to look for time
bins in which the local variance exceeds the global one by
a certain number of times. Given that definition, small in-
puts with only occasional bursts of traffic may pose a serious
problem by contaminating the method’s perception of what
is anomalous in the global setting of the network. More-
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Figure 5: Distribution of anomalies and total traffic
across different inputs.

over, packet sampling will increase the amount of noise in
the time series, which can be more harmful in small inputs
than in traffic which is highly aggregated.

4. CONCLUSIONS AND FUTURE WORK

In this paper we analyzed the impact of aggregation in the
performance of a network-wide anomaly detection method.
We analyzed three traffic aggregation formalisms that emerge
naturally in the context of network measurements, namely
ingress routers, input links, and traffic matrix. Our obser-
vations show that aggregation can be harmful to anomaly
detection in two different ways. First, the relative size of
an anomaly detected on input links or traffic matrices is
considerably larger with these formalisms than with ingress
routers, where there is too much aggregation. Second, a low
level of aggregation increases the variability on some links.
As a consequence the statistical noise increases, as well as
the number of false positives.

We observe that the level of traffic aggregation in ingress
routers is too large to allow effective anomaly detection in
our data sets. On the other hand, with input link aggrega-
tion, the spread of traffic is extremely unbalanced, and this
leads to false positive rates of up to 50%. The traffic matrix
formalism seems to provide a good compromise between the
number of true and false positives.

The work described in this paper is still preliminary. More
formalisms, more detection methods and more data sets
need to be studied. For example, we plan to study for-
malisms where the level of aggregation can be adjusted, such
as in random aggregation [6]. We have already collected sim-
ilar results with the PCA method described in [5]. However,
more progress needs to be made on PCA understanding be-
fore we can have enough confidence in these results [9].

We have shown that the performances of the formalisms
are strongly related to the variability of the data. An alter-
native way to reduce traffic variability would be to explore
temporal aggregation and its influence on the anomaly de-
tection. Using techniques such as the multi resolution anal-



ysis, we could identify timescales at which each formalism is
optimal.

We also plan to study how different formalisms are biased
towards detecting certain types of anomalies. As we men-
tioned, we have evidence that input links and the Traffic
Matrix detect different subsets of anomalies. In order to do
that we will need to further augment our data sets by identi-
fying meaningful clusters of semantically related anomalies.
With that in mind, we are working on improving our current
classification tool.
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